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Abstract. We establish hydrodynamic equations which describe the shear dynamics of a
supercooled liquid composed of anisotropic molecules. We use these equations to analyse 90◦
depolarized light scattering experiments performed in supercooled metatoluidine, and show that
the shear viscosity values extracted from the analysis are consistent with independent static
measurements performed in the same temperature range.

1. Introduction

In molecular liquids formed of rigid anisotropic molecules, the depolarized light scattering
spectra measured in backscattering geometry exhibit a more or less broad central line, with
typical linewidths of the order of 10–100 GHz, which is due to the reorientational motion of
the molecules. The rotation of the molecules has two different effects: it represents the probed
dynamics; it provides also the detection mechanism, the rotation of a molecule producing a
rotation of the rigid anisotropic polarizability tensor attached to it.

The situation is different in other scattering geometries. Experiments performed by
ultrasonic techniques in the early 1960s [1] had shown that, for glass forming liquids with
viscosities larger than∼100 poise, transverse waves could propagate. It was natural to think
that they should also appear in Brillouin scattering experiments when they were symmetry
allowed. The first experiments [2, 3], performed on liquids with typical shear viscosities of the
order of 1 cP in scattering geometries different from the backscattering one, revealed indeed
a depolarized spectrum with a minimum atω = 0, the so-called Rytov dip [4], with two
symmetric maxima in the vicinity of 1–2 GHz. Writing equations which coupled molecular
reorientations with the strain rate existing in a fluid, Keyes and Kivelson [5] and Anderson
and Pecora [6] showed that at such low viscosities, the minimum atω = 0 was the result of
an interference between the orientational dynamics and the diffusive shear modes originating
from a finite shear viscosity of the liquid. They also predicted that, at much higher viscosities
and under specific circumstances, transverse modes could propagate and could be detected as
normal transverse Brillouin lines. Indeed such a phenomenon was reported by Bezotet al [7]
then by Enright and Stoicheff [8] for viscosities around or above 100 cP but the shape of the
spectra could not be properly fitted with the help of the original formula [5, 6]. Convincing
fits required the introduction of additional dynamical variables [9], the dynamics of which
was not detected by other techniques. This made all the information deduced from the fitting
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of the spectra rather questionable. The development of new approaches to the liquid-glass
transition, which involves the systematic introduction of memory functions in the description
of all the friction forces appearing in the viscous fluid, made it attractive to revisit this old
problem. Moreover, progress [10] in light scattering methods make possible precise recording
and analysis of low frequency spectra with broad line shapes. This theoretical and experimental
progress led us to reformulate the original equations, following a route already partly explored
by Quentrec [11] and Wang [12], and to determine if those spectra could be interpreted in terms
of physically pertinent parameters. We briefly present here these equations and show that their
use in the case of the fragile molecular glass forming liquid metatoluidine brings indeed new
insight into the viscoelastic properties of this supercooled liquid.

2. The basic equations and their consequences

The equations of motion which are pertinent for our problem may be constructed as follows.
The typical relaxation time of the heat diffusion in dielectric liquids is of the order of 100 ns,
which means that this effect falls below the resolving power of the instrumental technique used
here. One can then consider an adiabatic scheme where one is left with two hydrodynamic
equations which describe the mass conservation and the momentum conservation:

ρ̇(r, t) + divJ(r, t) = 0 (2.1)

J̇i (r, t)− divj σij (r, t) = 0 (2.2)

whereρ(r, t) is the mass density andJ (r, t) is the mass current or momentum density,σij (r, t)

is the stress tensor,i (j ) being Cartesian coordinates.
The expression ofσ , and of an additional equation to be discussed below, may be

constructed in two steps. For not too viscous fluids, as proposed more than 30 years ago
[11], one writes

σ = (−δP + ηb div v)I + ηsτ − µQ̇ (2.3)

whereδP is the fluctuation of the hydrostatic pressure,I is the unit tensor whileηb andηs are
respectively the bulk and shear viscosities,τij being the traceless part of the strain rate tensor:

τij = ∂vi

∂xj
+
∂vj

∂xi
− 2

3
div v δij . (2.4)

Finally, in equation (2.3),Qij is the local fluctuation of the traceless part of the density of
tensor of inertia and its introduction under the form−µQ̇ij deserves some comment. It
originates from a perturbation of the isotropy of the molecular orientations in the liquid. The
appearance of a time derivative in equation (2.3) stresses the fact that it is the relaxation of this
fluctuation which generates an additional contribution to the shear tensor of the liquid, while
µ is a constant. Also, for an elongated molecule, an elementary discussion of the shear created
by its relaxation to an equilibrium orientation shows thatµ is positive. Equation (2.4) must be
complemented by an equation of motion for the molecular orientation:

Q̈ = −ω2
0Q− 0Q̇ +3′µτ . (2.5)

This equation results from the fact that three forces act onQ. The first one is an ordinary
restoring force and should lead to undamped librations of the molecules, should the two last
terms in equation (2.5) be neglected. The damping is described as follows: theQ̇ term is
the ordinary damping of the librations while the last one results from the rotation–translation
coupling. This effect is evidenced by the usual flow birefringence existing in a molecular liquid
made of anisotropic molecules. For elongated molecules, this leads to a positive factor in front
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of it, whence its writing in equation (2.5), the coefficient3 being some positive number taking
into account the different units appearing in equations (2.3) and (2.5). The second step consists
in generalizing equations (2.3) and (2.5) in order to take into account retardation effects. The
theoretical development on the physics of the liquid-glass transition has taught us that all the
friction forces which appear in the problem may be subjected to retardation effects. It is thus
consistent with such considerations to generalize equations (2.3) and (2.5) to

σ = (δP − ηb ⊗ div v)I− ηs ⊗ τ +µ⊗ Q̇ (2.6)

Q̈ = −ω2
0Q− 0̂ ⊗ Q̇ +3′µ⊗ τ (2.7)

where⊗ means a convolution product, and where we have written that the sameµ(t) acts in
equations (2.6) and (2.7). In fact,ω0 is a libration frequency which is in the THz region, while
the spectra we are interested in are in the 1–10 GHz domain. It is thus tempting to neglect the
l.h.s. of equation (2.7) with respect to the first term of its r.h.s.; though this is mathematically
incorrect, the result obtained by taking without care the Laplace transforms of equation (2.6)
and truncated equation (2.7) turns out to be the correct one, provided that one takes into account
a remark which we shall make above equation (2.13).

We perform here depolarized light scattering experiments in which the scattering angle is
θ . In molecular liquids, at low frequencies, the main source of depolarized light is the traceless
part,β of the molecular polarizability tensor. It is consistent with the hydrodynamics approach
used above to write

β = bQ. (2.8)

A lengthy calculation [13b] of the orientational correlation functions related to this VH
geometry shows that the scattered intensity at frequencyω is proportional to

I (ω) ≈ I 0b
2

ω
Im

(
R(ω) + cos2

θ

2
R1(ω)

)
(2.9)

whereI 0 is the incoming light beam intensity. In equation (2.9),R(ω) is the spectrum detected
in the backscattering geometry. It describes the orientational fluctuation dynamics of the
molecules. The second term,R1(ω), is the result of the coupling of the strain rate tensor with
the time derivative of the orientational fluctuations and depends specifically on the scattering
vectorq. It may be written as

R1(ω) = q2ρ−1
m G(ω)

ω2 − q2ρ−1
m [ωηs(ω)−G(ω)(1− R(ω))−1]

(2.10)

with:

G (ω) = 3′ω2
0

(
µ(ω)

0̂(ω)

)2

R2(ω) (2.11)

whereρm is the mass density, whileR(ω) is related to0(ω) by

R(ω) = ω0̂(ω)

[ω2
0 + ω0̂(ω)]

. (2.12)

The form ofR(ω) that we are going to use deserves some comments. From a formal point
of view, R(ω) is the Laplace transform, as defined in [13b], of the correlation function of
the componentQ⊥⊥′ of Q whereu⊥ andu′⊥ are two mutually orthogonal directions, both
perpendicular toq. For such a component, the last term of equation (2.7) drops out which
explains whyR(ω) is a pure orientational function involving onlŷ0(ω)/ω2

0.
Furthermore, it is now well documented that in supercooled liquids aboveTg, any

normalized correlation function first decreases from the value 1 to a value called hereR0,
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also defined as the nonergodicity parameter related to this function; this decrease takes place
in a time of the order ofω−1

0 . At much longer times, the orientational correlation function enters
into theα relaxation regime, which is usually well described by a stretched exponential with a
t = 0 value equal toR0 (we neglect in this section, for the sake of simplicity, an intermediate
β fast regime which takes place between the microscopic motion and theα relaxation regime).
The regime that we may probe in our Brillouin scattering experiments corresponds only to
the long time dynamics of this correlation function, i.e. only to theα-relaxation regime. This
implies that the integral of equation (2.12) will not beπ but πR0 with 0 < R0 < 1. The
existence of this coefficient is then a natural consequence of the theory, and previous studies
of this dynamics have shown thatR(ω) can be properly represented in the frequency range of
interest by

R(ω) = R0

[
1−

(
1

1 + iωτR

)β]
. (2.13)

whereτR andβ can be measured in a backscattering depolarized experiment.
The very idea of introducing retardation effects in the equations of motion leads us to

assume forωηs(ω) an expression similar to equation (2.13)

ωηs(ω) = η0
s

[
1−

(
1

1 + iωτs

)β]
(2.14)

and also to propose thatµ and0 have similar dynamics. This has two consequences: the
term in the bracket appearing in the denominator of equation (2.10) can be viewed either as
iω times a viscosity term or as the square of a frequency dependent sound velocity. By taking
theω > 0 limit of this bracket, the first interpretation allows to deduce the value of the static
shear viscosity:

ηs = βη0
s τs (2.15)

which shows that this static viscosity is only due to the motion of the centres of mass.
The second interpretation of this bracket shows that, at low temperatures, when the

transverse modes are well characterized, the transverse sound velocity is not only determined
by the infinite frequency shear modulus corresponding to the centres of mass motion,η0

s , but
is renormalized by the translation rotation coupling:

vT =
(
η0
s

ρm

(
1− G

∞

η0
s

(1− R0)−1

)]1/2

=
[
η0
s

ρm

]1/2

r (2.16)

whereG∞ is theω→∞ limit of G(ω); r can then be called the renormalization factor.

3. Experiment and data analysis

3.1. Experiment

A first test [13] of our description of the transverse hydrodynamics of supercooled glass forming
liquids, of our ability to determine the most relevant coefficients related to this theory and of
the consistency of the results with other independent measurements has been performed on
metatoluidine, CH3–C6H6–NH2 (melting temperatureTm = 243 K; thermodynamic glass
transition temperatureTg = 178 K).

The thermal variations of the refraction index and of the density are given by [14]:

n(T ) = −4.5× 10−4T (K) + 1.692(5) (3.1)

ρ(T ) = −8.1× 10−4T (K) + 1.225(0). (3.2)
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Low temperature, low frequency depolarized light scattering spectra have been measured in two
different geometries for various temperatures. A first series of experiments was performed with
different instruments in order to measure and analyse the pure rotationalα relaxation spectrum
over a large temperature range (178 K–300 K) [15, 16]. The whole series of corresponding
orientational relaxation times thus obtained could be fitted by a Vogel–Fulcher law, from where
values ofτR were obtained for all the intermediate temperature values used here, as well as
the values of the stretching coefficientβ of equation (2.13).

The second series of experiments consisted of 90◦ VH light scattering experiments. They
were performed on a eight-pass tandem Fabry–Pérot instrument, the source being a Coherent
Innova 90 monomode Ar+ laser (λ = 514.5 nm). The spectra were recorded between 0.75 GHz
and 8 GHz.

The check of the consistency of our hydrodynamic equations implied the direct verification
of equation (2.15), and thus the knowledge of the static viscosity on a large temperature range.
Previous measurements of this viscosity coefficient made above 254 K were used. Lower
temperature values were obtained though the use of Rheometrics RHS-800 viscometer down
to 191 K.

Figure 1. 90 degrees depolarized spectra of supercooled metatoluidine at 248 K (•), 228 K (◦)
and 218 K (4).

3.2. Data analysis

A selected set of the 90◦ VH spectra is shown in figure 1. At the highest temperature (248 K),
a weak bump (see also figure 2) emerges around 2.5 GHz from a broad central peak while, at
208 K, the transverse phonon appears as a quite narrow peak located at 4.5 GHz. We fitted the
spectra with equations (2.9)–(2.11) whereR(ω) andωη(ω) are given by equations (2.13)
and (2.16) respectively,R0 being the only parameter of equation (2.13) not fixed by the
backscattering experiments. In order to reduce the number of fit parameters we made the further
approximation thatµ(ω)/0̂(ω) is constant. Finally, we had to take into account to some extent
the up-to-now neglected higher frequency relaxation processes which should in principle be
introduced both in the viscosity function,ωηs(ω), and in the orientational function),R(ω).
In the data analysis we present here, we have used a very crude approximation in introducing
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Figure 2. Fits to the data at—left 248 K—right 233 K.

only an extra damping term−iωγ0 in the denominator of equation (2.10). Furthermore,γ0

was assumed to be temperature independent and determined from the remaining linewidth of
the transverse modes in the glass phase (178 K), where the relaxation processes appearing in
the term in bracket of the denominator of equation (2.10) are all frozen out.

4. Results and discussion

The parameters obtained with such a simplifying hypothesis are reported in table 1 while
the quality of the fits is examplified in figure 2 for the two temperaturesT = 248 K and
T = 233 K. The value and the temperature variations of the quantities reported in table 1
deserve a certain number of comments which originate also from other fits made with a more
realistic representation of theβ relaxation process and which will be presented elsewhere [17].

Table 1. Fitting parameters for metatoluidine VH spectra.τs , η0
s ,3(µ/0)

2 andR0, as described
in the text.τR is taken from [15] (the time reported by Dreyfuset al (1998) is erroneous);r, vT and
βη0

s τs are deduced from the fitting parameters (see text) andηs is the static shear viscosity value
interpolated from the mechanical spectroscopy measurements.

T τR τs η0
s 3

(µ
0

)2
vT βη0

s τs ηs

(K) (ns) (ns) (108 Pa) (108 Pa) R0 r (m s−1) (Pa s) (Pa s)

248 0.9 0.23 4.8 0.8 0.58 0.93 640 0.05 0.06
243 1.6 0.25 5.9 1.0 0.61 0.91 690 0.075 0.07
238 3.2 0.35 7.6 1.4 0.63 0.89 778 0.13 0.13
233 6.9 0.45 8.5 1.8 0.60 0.89 805 0.19 0.29
228 17.2 1.0 9.1 2.1 0.53 0.92 844 0.45 0.75
223 50.4 2.1 9.9 2.2 0.56 0.91 883 1.05 2.0
218 182 4.1 10.2 2.6 0.46 0.94 926 2.1 8.4
213 870 5.8 11.0 1.5 0.68 0.89 960 3.2 37
208 6112 12.0 13.8 1.6 0.71 0.89 1020 8.3 246



Light scattering in supercooled metatoluidine A145

The viscosity relaxation timesτs are definitely shorter that the rotational relaxationτR,
whatever the temperature considered. The infinite frequency shear modulusη0

s (T ), related
solely to the motion of the centres of mass, has a definite important decrease with temperature.
Conversely, the rotation–translation coupling,r(T ), has a small effect (∼10%) on the effective
velocity of transverse sound waves and the importance of this effect does almost not vary with
temperature. We must point out that, since pioneering work [1] in the 1960s, effective velocity
of the transverse sound has been known to strongly decrease with increasing temperature. The
present results show that, at least in metatoluidine, this variation is a centre of mass effect and
does not originate from an increase of the translation–rotation coupling efficiency.

Figure 3. Comparison betweenβη0
s τs ( ) as obtained from table 1—present paper, fit parameters,

and the Couette viscosity measurements (◦), as a function of temperature. The inset presents static
viscosity data over a larger range of temperature:× [22] andH [23].

The consistency of our hydrodynamic equations and of our analysis is checked in figure 3,
where direct measurements of the static shear viscosity are compared to the values obtained
through equation (2.15). Both sets of values agree well, within the possible accuracy of the
measurements, between 248 K (i.e. just above the melting temperature) and 223 K, i.e. from
0.06 Pa s (0.6 P) to 2 Pa s (20 P). The divergence which takes place at lower temperatures
is probably related to our very poor description of the fastβ process: it gives rise to a very
strong correlation between its actual description and the value ofτs at low temperature, making
impossible an estimate of the latter in this last case. We have recently verified [17] that assuming
τR andτs to be proportional is enough to fulfil equation (2.15) for a variation of the viscosity of
five orders of magnitude with a good accuracy without altering any of the previous conclusions,
and with reasonable shapes for theβ relaxation processes.

In conclusion, we have measured the shear relaxation time,τs , and found it to be
always shorter than the reorientation relaxation time,τR, the increase of the ratioτR/τs with
decreasing temperature, being possibly the result of the neglect of fast relaxation processes.
We have found that it is possible to obtain, from data measured in the supercooled phase
by light scattering experiments, values of the static shear viscosity which compare well
with direct measurements. Another question is related to the temperature variation of the
coefficientη0

s , the infinite frequency limit ofωηs(ω) (see equation (2.16)). We found that in
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metatoluidine,η0
s decreases strongly with increasing temperature whiler, which expresses

the rotation–translation coupling, is almost constant. We may point out that this result is the
opposite of previous findings, in particular by Wang and his collaborators, who proposed in
other molecular glass forming liquids [18, 19] that the rotational–translational coupling plays an
important role in the decrease of the shear velocity of the corresponding liquid but they could not
base this statement on a quantitative analysis of the corresponding spectra. As metatoluidine
appears to be similar in many respects to those other molecular glass formers [20, 21], a
complete analysis of those transverse spectra needs to be performed with the experimental
accuracy presently available before a firm conclusion on the thermal evolution of theirη0

s and
r factor can be made.
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